Credit Card Data Analysis using PySpark (Get the total amount spent by each user for each of their card) with execution plan

Input details:

#● File has json records
#● Each record has fields:
#○ user_id
#○ card_num
#○ merchant
#○ category
#○ amount
#○ ts
### Below analysis to be done

Sample data:

+------+--------+---------+--------+----------+-------+|amount|card_num| category|merchant|        ts|user_id|+------+--------+---------+--------+----------+-------+|   243|   C_108|     food|   M_102|1579532902|  U_104||   699|   C_106|cosmetics|   M_103|1581759040|  U_103||   228|   C_104| children|   M_110|1584161986|  U_103|

Application: Get the total amount spent by each user for each of their card

Solution:

cardTnDF = spark.read.json(“card_transactions.json”)
cardTnDF.groupBy(‘user_id’,’card_num’).sum(‘amount’).show()

Output:
[Row(user_id='U_101', card_num='C_102', sum(amount)=59203), Row(user_id='U_104', card_num='C_108', sum(amount)=54728), Row(user_id='U_101', card_num='C_101', sum(amount)=66581), Row(user_id='U_104', card_num='C_107', sum(amount)=56211), Row(user_id='U_102', card_num='C_103', sum(amount)=126475), Row(user_id='U_103', card_num='C_104', sum(amount)=43209), Row(user_id='U_103', card_num='C_105', sum(amount)=44366), Row(user_id='U_103', card_num='C_106', sum(amount)=43964)]
== Physical Plan ==AdaptiveSparkPlan (10)+- == Final Plan ==   * HashAggregate (6)   +- AQEShuffleRead (5)      +- ShuffleQueryStage (4)         +- Exchange (3)            +- * HashAggregate (2)               +- Scan json  (1)+- == Initial Plan ==   HashAggregate (9)   +- Exchange (8)      +- HashAggregate (7)         +- Scan json  (1)(1) Scan json Output [3]: [amount#443L, card_num#444, user_id#448]Batched: falseLocation: InMemoryFileIndex [file:/Users/dpq/Practice/card_transactions.json]ReadSchema: struct<amount:bigint,card_num:string,user_id:string>(2) HashAggregate [codegen id : 1]Input [3]: [amount#443L, card_num#444, user_id#448]Keys [2]: [user_id#448, card_num#444]Functions [1]: [partial_sum(amount#443L)]Aggregate Attributes [1]: [sum#466L]Results [3]: [user_id#448, card_num#444, sum#467L](3) ExchangeInput [3]: [user_id#448, card_num#444, sum#467L]Arguments: hashpartitioning(user_id#448, card_num#444, 200), ENSURE_REQUIREMENTS, [id=#604](4) ShuffleQueryStageOutput [3]: [user_id#448, card_num#444, sum#467L]Arguments: 0(5) AQEShuffleReadInput [3]: [user_id#448, card_num#444, sum#467L]Arguments: coalesced(6) HashAggregate [codegen id : 2]Input [3]: [user_id#448, card_num#444, sum#467L]Keys [2]: [user_id#448, card_num#444]Functions [1]: [sum(amount#443L)]Aggregate Attributes [1]: [sum(amount#443L)#461L]Results [3]: [user_id#448, card_num#444, sum(amount#443L)#461L AS sum(amount)#462L](7) HashAggregateInput [3]: [amount#443L, card_num#444, user_id#448]Keys [2]: [user_id#448, card_num#444]Functions [1]: [partial_sum(amount#443L)]Aggregate Attributes [1]: [sum#466L]Results [3]: [user_id#448, card_num#444, sum#467L](8) ExchangeInput [3]: [user_id#448, card_num#444, sum#467L]Arguments: hashpartitioning(user_id#448, card_num#444, 200), ENSURE_REQUIREMENTS, [id=#594](9) HashAggregateInput [3]: [user_id#448, card_num#444, sum#467L]Keys [2]: [user_id#448, card_num#444]Functions [1]: [sum(amount#443L)]Aggregate Attributes [1]: [sum(amount#443L)#461L]Results [3]: [user_id#448, card_num#444, sum(amount#443L)#461L AS sum(amount)#462L](10) AdaptiveSparkPlanOutput [3]: [user_id#448, card_num#444, sum(amount)#462L]Arguments: isFinalPlan=true

Popular posts from this blog

What is Garbage collection in Spark and its impact and resolution

How to change column name in Dataframe and selection of few columns in Dataframe using Pyspark with example

Window function in PySpark with Joins example using 2 Dataframes (inner join)