Window function in PySpark with Joins example using 2 Dataframes (inner join)

Input details:

#● File has json records
#● Each record has fields:
#○ user_id
#○ card_num
#○ merchant
#○ category
#○ amount
#○ ts
### Below analysis to be done

Sample data:

+------+--------+---------+--------+----------+-------+|amount|card_num| category|merchant|        ts|user_id|+------+--------+---------+--------+----------+-------+|   243|   C_108|     food|   M_102|1579532902|  U_104||   699|   C_106|cosmetics|   M_103|1581759040|  U_103||   228|   C_104| children|   M_110|1584161986|  U_103|

Solution:

from pyspark.sql.functions import col

# this can be done without using window function
creditCardData = spark.read.json(“card_transactions.json”)

useridMaxSpendDF = df.groupby(‘user_id’).max(‘amount’)
useridMaxSpendDF=useridMaxSpendDF.withColumnRenamed(“max(amount)”,”max_amount”)
useridMaxSpendDF=useridMaxSpendDF.withColumnRenamed(“user_id”,”m_user_id”)
cond = [creditCardData.user_id == useridMaxSpendDF.m_user_id, creditCardData.amount == useridMaxSpendDF.max_amount]
joinedData = creditCardData.join(useridMaxSpendDF,cond,”inner”)
joinedData.select(col(“amount”),col(“category”),col(“user_id”)).distinct().show()

+------+-------------+-------+|amount|     category|user_id|+------+-------------+-------+|  1000|entertainment|  U_101||   997|    groceries|  U_102||   977|    groceries|  U_103||   977|         food|  U_103||   996|         food|  U_104||   996|     children|  U_104|+------+-------------+-------+

Popular posts from this blog

What is Garbage collection in Spark and its impact and resolution

How to change column name in Dataframe and selection of few columns in Dataframe using Pyspark with example