Credit Card Data Analysis using PySpark (Get the category in which the user has made the maximum expenditure) using window function

Input details:

#● File has json records
#● Each record has fields:
#○ user_id
#○ card_num
#○ merchant
#○ category
#○ amount
#○ ts
### Below analysis to be done

Sample data:

+------+--------+---------+--------+----------+-------+|amount|card_num| category|merchant|        ts|user_id|+------+--------+---------+--------+----------+-------+|   243|   C_108|     food|   M_102|1579532902|  U_104||   699|   C_106|cosmetics|   M_103|1581759040|  U_103||   228|   C_104| children|   M_110|1584161986|  U_103|

Application: Get the category in which the user has made the maximum expenditure

Solution:

from pyspark.sql.window import Window
from pyspark.sql.functions import col, row_number

df = spark.read.json(“card_transactions.json”)

#getting max amount spent by user
print(df.groupby(‘user_id’).max(‘amount’).collect())

windowDept = Window.partitionBy(“user_id”).orderBy(col(“amount”).desc())
df.withColumn(“row”,row_number().over(windowDept)) \
.filter(col(“row”) == 1).drop(“row”) \
.show()

Output:

[Row(user_id='U_102', max(amount)=997), Row(user_id='U_104', max(amount)=996), Row(user_id='U_101', max(amount)=1000), Row(user_id='U_103', max(amount)=977)]+------+--------+-------------+--------+----------+-------+|amount|card_num|     category|merchant|        ts|user_id|+------+--------+-------------+--------+----------+-------+|  1000|   C_101|entertainment|   M_100|1580163399|  U_101||   997|   C_103|    groceries|   M_103|1582876481|  U_102||   977|   C_104|    groceries|   M_101|1579402924|  U_103||   996|   C_108|         food|   M_106|1581391534|  U_104|+------+--------+-------------+--------+----------+-------+

Popular posts from this blog

What is Garbage collection in Spark and its impact and resolution

How to change column name in Dataframe and selection of few columns in Dataframe using Pyspark with example

Window function in PySpark with Joins example using 2 Dataframes (inner join)