Credit Card Data Analysis using PySpark (Get the total amount spent by each user) with execution plan

Input details:

#● File has json records
#● Each record has fields:
#○ user_id
#○ card_num
#○ merchant
#○ category
#○ amount
#○ ts
### Below analysis to be done

Sample data:

+------+--------+---------+--------+----------+-------+|amount|card_num| category|merchant|        ts|user_id|+------+--------+---------+--------+----------+-------+|   243|   C_108|     food|   M_102|1579532902|  U_104||   699|   C_106|cosmetics|   M_103|1581759040|  U_103||   228|   C_104| children|   M_110|1584161986|  U_103|

Application: Get the total amount spent by each user

Solution:

cardTnDF = spark.read.json(“card_transactions.json”)
cardTnDF.show(3)
cardTnDF.groupBy(‘user_id’).sum(‘amount’).collect()

Output:

+------+--------+---------+--------+----------+-------+|amount|card_num| category|merchant|        ts|user_id|+------+--------+---------+--------+----------+-------+|   243|   C_108|     food|   M_102|1579532902|  U_104||   699|   C_106|cosmetics|   M_103|1581759040|  U_103||   228|   C_104| children|   M_110|1584161986|  U_103|+------+--------+---------+--------+----------+-------+only showing top 3 rows
Out[3]:
[Row(user_id='U_102', sum(amount)=126475), Row(user_id='U_104', sum(amount)=110939), Row(user_id='U_101', sum(amount)=125784), Row(user_id='U_103', sum(amount)=131539)]

Execution Plan:

== Physical Plan ==AdaptiveSparkPlan (10)+- == Final Plan ==   * HashAggregate (6)   +- AQEShuffleRead (5)      +- ShuffleQueryStage (4)         +- Exchange (3)            +- * HashAggregate (2)               +- Scan json  (1)+- == Initial Plan ==   HashAggregate (9)   +- Exchange (8)      +- HashAggregate (7)         +- Scan json  (1)(1) Scan json Output [2]: [amount#277L, user_id#282]Batched: falseLocation: InMemoryFileIndex [file:/Users/dpq/Practice/card_transactions.json]ReadSchema: struct<amount:bigint,user_id:string>(2) HashAggregate [codegen id : 1]Input [2]: [amount#277L, user_id#282]Keys [1]: [user_id#282]Functions [1]: [partial_sum(amount#277L)]Aggregate Attributes [1]: [sum#330L]Results [2]: [user_id#282, sum#331L](3) ExchangeInput [2]: [user_id#282, sum#331L]Arguments: hashpartitioning(user_id#282, 200), ENSURE_REQUIREMENTS, [id=#469](4) ShuffleQueryStageOutput [2]: [user_id#282, sum#331L]Arguments: 0(5) AQEShuffleReadInput [2]: [user_id#282, sum#331L]Arguments: coalesced(6) HashAggregate [codegen id : 2]Input [2]: [user_id#282, sum#331L]Keys [1]: [user_id#282]Functions [1]: [sum(amount#277L)]Aggregate Attributes [1]: [sum(amount#277L)#326L]Results [2]: [user_id#282, sum(amount#277L)#326L AS sum(amount)#327L](7) HashAggregateInput [2]: [amount#277L, user_id#282]Keys [1]: [user_id#282]Functions [1]: [partial_sum(amount#277L)]Aggregate Attributes [1]: [sum#330L]Results [2]: [user_id#282, sum#331L](8) ExchangeInput [2]: [user_id#282, sum#331L]Arguments: hashpartitioning(user_id#282, 200), ENSURE_REQUIREMENTS, [id=#459](9) HashAggregateInput [2]: [user_id#282, sum#331L]Keys [1]: [user_id#282]Functions [1]: [sum(amount#277L)]Aggregate Attributes [1]: [sum(amount#277L)#326L]Results [2]: [user_id#282, sum(amount#277L)#326L AS sum(amount)#327L](10) AdaptiveSparkPlanOutput [2]: [user_id#282, sum(amount)#327L]Arguments: isFinalPlan=true

 

Popular posts from this blog

How to change column name in Dataframe and selection of few columns in Dataframe using Pyspark with example

What is Garbage collection in Spark and its impact and resolution

Credit Card Data Analysis using PySpark (how to use auto broadcast join after disabling it)