Model Data Anylysis Using DataFrame and SparkSQL in java
Here we will analyze Model data using pure Spark SQL, Data Frame and will use mostly used methods with sample data package com.dpq.model.data.driver; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class ModelDataAnalysis { public static void main(String[] args) throws InterruptedException { JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName(“Spark Count”).setMaster(“local”)); SparkSession spark = SparkSession.builder().appName(“spark-bigquery-demo”).getOrCreate(); Dataset<Row> row = spark.read().csv(“/Users/dpq/springbootWrokspace/CountryDataAnalysis/resources/modeloutput.csv”); // way 1 to change column name row = row.withColumnRenamed(“_c0”, “CountryName”); row = row.withColumnRenamed(“_c1”, ...